QTM Trilayer Cantilever Probes

Silicon Nitride-Polymer AFM probes: for Quantum Twisting Microscopy

General description

The Trilayer Cantilevers (TLC) feature a unique structure with Silicon Nitride films and a polymer core, resulting in increased thickness without excessive stiffness. This design significantly amplifies force sensitivity (μ V/nN), surpassing standard singlecrystalline Si cantilevers by a factor of 4x. Due to the low Q-factor of less than 250 (even in a vacuum). The TLC enables scanning speeds up to 10x faster than those achievable with Si or SiN-CL. Additionally, the electrical insulation of electronic sensors within the SiN/Polymer interface ensures robustness and reliability even in harsh conditions. Coated tip with Pt metal traces for use in Quantum Twisting Microscopy (QTM) experiments.

Specifications			
Model	QTM Trilayer cantilevers		
Material	SiN with a polymer core		
Tip material	-tipless-		
Pt metal coating	Up to 6 traces to the tip (thickness 70 nm or 140 nm)		
Modes	QTM		
Possible dimensions*	Res. Freq.	Spring constant	Deflection sensitivity**
μт x μт x μт	KHz	N/m	μV/nm
300x90x4	50	5	1
Deflection sensing	on-chip piezoresistive bridge		
Actuator	external shaker		
Electrical	Unbonded		
connections			
* Nominal values. Fo ** Not amplified (sig	r more dimens nal direct at th	ions, contact u ne chip), 1 V br	is. idge supply.

Applications:

Quantum Twisting Microscopy

C-Sense

Nanotechnology

Image of 6 Pt-trace QTM Trilayer Cantilever

Image of 4 Pt-trace QTM Trilayer Cantilever

Image of 2 Pt-trace QTM Trilayer Cantilever

What about your application? Contact us!

References: Inbar, A., Birkbeck, J., Xiao, J. et al. The quantum twisting microscope. Nature 614, 682–687 (2023).

