TC Trilayer Cantilever Probes

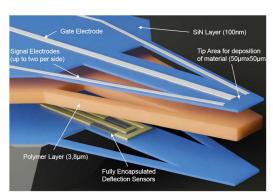
Silicon Nitride-Polymer AFM probes: for low temperature experiments

General description

The Quantum Cryogenic Trilayer Cantilever (QTC) is a custom device engineered for ultra-sensitive experiments in lowtemperature environments. Built on the trilayer technology pioneered at EPFL, it combines silicon nitride films with a polymer **core**, providing increased thickness without excessive stiffness. This results in a 4× higher force sensitivity (µV/nN) compared to standard single-crystalline silicon cantilevers.

A triangular cantilever design with five platinum traces leading to the tip ensures reliable electrical signal transfer. The traces are Figure 1: Schematic of the QCT cantilever insulated from the integrated Wheatstone bridge, eliminating crosstalk and ensuring precise, stable measurements. Robust electrical insulation within the SiN/Polymer interface provides durability even under cryogenic conditions, making the QTC Cantilever a versatile tool for cutting-edge quantum research.

Specifications			
Model	QCT cantilevers		
Material	SiN with a polymer core		
Tip material	-tipless-		
Pt metal coating	Up to 5 traces to the tip (thickness 70 nm)		
Modes	Low Temperature compatible		
Possible	Res. Freq.	Spring	Deflection
dimensions*		constant	sensitivity**
μт х μт х μт	kHz	N/m	μV/nm
300x80x4	45	4.5	1
Deflection sensing	on-chip piezoresistive bridge		
Actuator	external shaker		
Electrical	Unbonded		
connections			


^{*} Dimensions of the main beam. Side beam width: 40µm

Applications:

- Low Temperature-AFM / KPFM
- · Probing quantum coherence, tunneling phenomena, and spin dynamics
- Sensitive force detection in cryogenic environments

What about your application? Contact us!

References: Hosseini, N., Neuenschwander, M., Adams, J.D. et al. Nature Electronics DOI:10.1038/s41928-024-01195-z

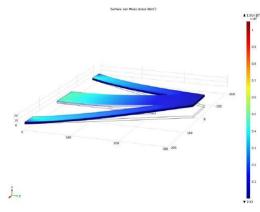


Figure 2: Simulation of bending behavior

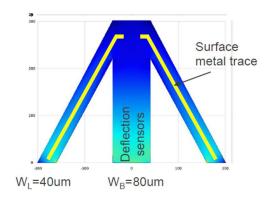


Figure 3: Schematic structure of Pt-traces (gate electrode not shown here)

Web: www.c-sense.at

Email: info@c-sense.at

^{**} Nominal value. Not amplified, 1 V bridge supply.